508 research outputs found

    A Review of the Open Educational Resources (OER) Movement: Achievements, Challenges, and New Opportunities

    Get PDF
    Examines the state of the foundation's efforts to improve educational opportunities worldwide through universal access to and use of high-quality academic content

    Respiratory syncytial virus seasonality and prevention strategy planning for passive immunisation of infants in low-income and middle-income countries:a modelling study

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) represents a substantial burden of disease in young infants in low-income and middle-income countries (LMICs). Because RSV passive immunisations, including maternal vaccination and monoclonal antibodies, can only grant a temporary period of protection, their effectiveness and efficiency will be determined by the timing of the immunisation relative to the underlying RSV seasonality. We aimed to assess the potential effect of different approaches for passive RSV immunisation of infants in LMICs. METHODS: We included 52 LMICs in this study on the basis of the availability of RSV seasonality data and developed a mathematical model to compare the effect of different RSV passive immunisation approaches (seasonal approaches vs a year-round approach). For each candidate approach, we calculated the expected annual proportion of RSV incidence among infants younger than 6 months averted (effectiveness) and the ratio of per-dose cases averted between that approach and the year-round approach (relative efficiency). FINDINGS: 39 (75%) of 52 LMICs included in the study had clear RSV seasonality, defined as having more than 75% of annual RSV cases occurring in 5 or fewer months. In these countries with clear RSV seasonality, the seasonal approach in which monoclonal antibody administration began 3 months before RSV season onset was only a median of 16% (IQR 13-18) less effective in averting RSV-associated acute lower respiratory infection (ALRI) hospital admissions than a year-round approach, but was a median of 70% (50-97) more efficient in reducing RSV-associated hospital admissions per dose. The seasonal approach that delivered maternal vaccination 1 month before the season onset was a median of 27% (25-33) less effective in averting hospital admissions associated with RSV-ALRI than a year-round approach, but was a median of 126% (87-177) more efficient at averting these hospital admissions per dose. INTERPRETATION: In LMICs with clear RSV seasonality, seasonal approaches to monoclonal antibody and maternal vaccine administration might optimise disease prevention by dose given compared with year-round administration. More data are needed to clarify if seasonal administration of RSV monoclonal antibodies or maternal immunisation is programmatically suitable and cost effective in LMICs. FUNDING: The Bill & Melinda Gates Foundation, World Health Organization

    plantTracker: An R Package to Translate Maps of Plant Occurrence Into Demographic Data

    Get PDF
    Long-term demographic data are rare yet invaluable for conservation, management, and basic research on the underlying mechanisms of population and community dynamics. Historical and contemporary mapped datasets of plant location and basal area present a relatively untapped source of demographic records that, in some cases, span over 20 years of sequential data collection. However, these maps do not uniquely mark individual plants, making the process of collecting growth, survival, and recruitment data difficult. Recent efforts to translate historical maps of plant occurrence into shapefiles make it possible to use computer algorithms to track individuals through time and determine individual growth and survival. We summarize the plantTracker R package, which contains user-friendly functions to extract neighbourhood density, growth, and survival data from repeatedly-sampled maps of plant location and basal area. These functions can be used with data derived from quadrat maps, aerial photography, and remote sensing, and while designed for use with perennial plants, can be applied to any repeatedly mapped sessile organism. This package contains two primary functions: trackSpp(), which tracks individuals through time and assigns demographic data, as well as getNeighbors(), which calculates both within and between-species neighbourhood occupancy around each mapped individual. plantTracker also contains functions to estimate plot-level recruitment, calculate plot-level population growth rate, and create quadrat maps. We tested the accuracy of the trackSpp() function on two spatial demographic datasets. The function was nearly perfect at assigning individual identities and survival status when tested on maps of tree basal area and perennial forb point locations. In both cases, the function correctly assigned survival and recruitment with 99% accuracy. These accurate and precise functions will expand the amount of data available to investigate demographic processes, which are fundamental drivers of population, community, and ecosystem processes

    Ultra high-speed transaxial image reconstruction of the heart, lungs, and circulation via numerical approximation methods and optimized processor architecture

    Full text link
    A high temporal resolution scanning multiaxial tomography unit, the Dynamic Spatial Reconstructor (DSR), presently under development will be capable of recording multiangular X-ray projection data of sufficient axial range to reconstruct a cylindrical volume consisting of up to 240 contiguous 1-mm thick cross sections encompassing the intact thorax. At repetition rates of up to 60 sets of cross sections per second, the DSR will thus record projection data sufficient to reconstruct as many as 14 400 cross-sectional images during each second of operation. Use of this system in a clinical setting will be dependent upon the development of software and hardware techniques for carrying out X-ray reconstructions at the rate of hundreds of cross sections per second. A conceptual design, with several variations, is proposed for a special purpose hardware reconstruction processor capable of completing a single cross section reconstruction within 1 to 2 msec. In addition, it is suggested that the amount of computation required to execute the filtered back-projection algorithm may be decreased significantly by the utilization of approximation equations, formulated as recursions, for the generation of internal constants required by the algorithm. The effects on reconstructed image quality of several different approximation methods are investigated by reconstruction of density projections generated from a mathematically simulated model of the human thorax, assuming the same source-detector geometry and X-ray flux density as will be employed by the DSR. These studies have indicated that the prudent application of numerical approximations for the generation of internal constants will not cause significant degradation in reconstructed image quality and will in fact require substantially less auxiliary memory and computational capacity than required by direct execution of mathematically exact formulations of the reconstruction algorithm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23631/1/0000595.pd

    The Flying Fish Persistent Ocean Surveillance Platform

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77030/1/AIAA-2009-1902-584.pd

    The First VERITAS Telescope

    Full text link
    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ\gamma-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic

    Gravitational effective action at second order in curvature and gravitational waves

    Get PDF
    We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton’s potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton’s potential
    • …
    corecore